Uvod
Potopno elektroerozijska obdelava (SEDM) ima v primerjavi z ostalimi obdelovalnimi postopki določene prednosti, zlasti na področju izdelave kompleksnih oblik, globokih utorov in notranjih ostrih kotov v mehansko trdih materialih (v trdih zlitinah). Metoda elektroerozijske obdelave (SEDM) je danes del visoko avtomatizirane tehnologije, ki temelji na temeljitem poznavanju teorije procesa in dolgoletne prakse.
Za boljše razumevanje procesa SEDM je treba poznati osnovne vidike teorije elektroerozijskega odvzema kovin.
Orodje-elektroda (OE) prezrcali svojo negativno podobo v elektrodo-obdelovanca (EO), oblika in dimenzija te podobe pa je zrcalna podoba dimenzij in geometrije orodja-elektrode. Dejstvo je, da vsaka razelektritev med OE in EO vodi do nastanka lokalnih kraterjev na njunih površinah na področju obdelave. Nalaganje velikega števila takšnih kraterjev in regulator toka oblikujeta geometrijo vrzeli med dvema elektrodama.
SEDM je nekonvencionalni proces, ker so pogoji za nastop in potek vsake razelektritve odvisni od prejšnjih razelektritev. Ne obstaja matematični model procesa, saj bi ta zahteval popoln opis nelinearnih, verjetnostnih, elektrodinamičnih, toplotno energijskih, hidrodinamičnih in toplotno-kemičnih procesov, ki potekajo med seboj povezano med vsako razelektritvijo. Zato so raziskovalci SEDM razvili fenomenološki model procesa, v katerem so njegovi glavni vidiki obravnavani ločeno. Ti vključujejo:
1. Faze v eni razelektritvi
- preboj in oblikovanje prevodnega kanala
- toplotni procesi na elektrodah in porazdelitev energije
- nastanek plinskega mehurja okrog kanala razelektritve
- toplotno-kemični procesi v dielektriku
2. Procesi v območju obdelave, ki potekajo pri množičnih razelektritvah
Faze v eni razelektritvi
Preboj
Obstajajo različne teorije, zakaj v reži med elektrodama pride do preboja. Po našem mnenju je najbolj uporabna teorija, po kateri trkovna ionizacija med elektroprevodnimi delci v tekočinah ustvari prevodni kanal. Ta teorija namreč pojasnjuje, zakaj v čistem dielektriku proces ne steče (kratki stiki) in zakaj je velikost reže med elektrodama močno odvisna od koncentracije nečistoč na delovni površini.
Pri obdelavi grobih ali deloma očiščenih površin je možnost kratkih stikov zaradi teh nečistoč opazno večja. Za stabilizacijo delovnega procesa je v tovrstnih pogojih nujno, da je moč generatorja na začetku razelektritve dovolj velika, da uniči elektroprevodne delce, ki nastanejo kot posledica erozije materiala, in da se oblikuje normalni kanal razelektritve.
Prevodni kanal
Ob preboju se med elektrodama oblikuje prevodni kanal, katerega premer se v prvih mikrosekundah hitro povečuje. Pri daljših razelektritvah se hitrost povečevanja premera prevodnega kanala znižuje. Hitrosti širjenja prevodnega kanala (pri enakih drugih pogojih) je odvisna od lastnosti dielektrika (temperatura, koncentracije nečistoč itd.).
V prevodnem kanalu se formira plazma, ki je sestavljena iz ionov in elektronov. Takoj po tem, ko se je zgodil preboj v začetni fazi razelektritve, imajo elektroni višjo temperaturo in višjo kinetično energijo kot ioni. Pri dovolj dolgih razelektritvah se temperaturi elektronov in ionov začneta izravnavati in plazma v razelektritvenem kanalu postane bolj izometrična.
Padec napetosti v prevodnem kanalu je sorazmeren z dolžino kanala. Povečevanje premera kanala v času je odvisno od dolžine trajanja in moči razelektritve, prav tako pa je odvisno od lastnosti dielektrika.
Energijska bilanca
Dejstvo je, da se energija in moč porazdelita med elektrodama – katodo in anodo, prav tako pa pride do porazdelitve v razelektritvenem kanalu. Energija, ki poganja proces, pride do elektrod na naslednje načine:
- s pomočjo toka elektronov in ionov
- s pomočjo toplotnega toka iz razelektritvenega kanala
- s pomočjo toplotnega sevanja
- s pomočjo skupnih izvorov toplote
Izračuni kažejo, da večji del energije v elektrode pride s pomočjo toka elektronov in ionov (glej dodatek št. 1). Razporeditev energije med anodo in katodo je pri enakih ostalih pogojih odvisna od trajanja razelektritve. Če je razelektritev krajša od 10 mikrosekund, se večina energije prenese na anodo s pomočjo toka »hitrejših« elektronov. Če razelektritev traja med 100 in 1000 mikrosekundami:
- preide večji del energije na katodo preko »počasnih« ionov
- se padec napetosti na anodi zmanjša. Padec napetosti je približno proporcionalen z gostoto električnega toka, ki se znižuje pri povečevanju premera prevodnega kanala.
Zato je pri dovolj dolgih razelektritvah odvzem materiala s katode večji od odvzema materiala z anode. Moč, ki jo oddajata katoda in anoda, lahko izrazimo s pomočjo toplotne energije. Gostota toplotne energije, tako kot gostota električnega toka, sta odvisni od trajanja in moči razelektritve. Toplotna energija, ki nastaja v prevodnem kanalu, se sprosti s pomočjo izparevanja dielektrika (delovne tekočine) in v obliki svetlobne energije.
Prenos toplotne energije
S pomočjo klasične termofizike so bili ugotovljeni in raziskani naslednji pojavi:
- če razelektritev traja več kot 10 mikrosekund, doseže gostota toplotne energije v reži več 10 milijonov W na cm2. V tem primeru material elektrod, neodvisno od termo-fizikalnih konstant v hipu izpari. V samo elektrodo v tem primeru preide malo toplotne energije, tako da pri uporabi kratkih impulzov toplotno spremenjenega sloja po EDM skorajda ni.
- če impulz traja od 100 do 1000 mikrosekund, se gostota toplotne energije postopno znižuje. Glavnina materiala, ki se odvzema iz kraterja, se nahaja v raztaljenem stanju in ne izpari. Večji del toplotne energije v tem primeru prehaja v telesi elektrod, kar privede do nastanka toplotno spremenjenega sloja, katerega globina znaša od 0,01-0,2 mm.
Pri razelektritvah, ki trajajo relativno dlje, je možno izkoristiti razlike v termo-fizikalnih lastnostih materialov elektrod, s čimer znatno znižamo obrabo orodja-elektrode. Na primer: temperatura sublimacije grafita je 3500ºC, toplotna prevodnost bakra pa je nekajkrat višja od toplotne prevodnosti grafita in jekla. Toplotna prevodnost volframa je razmeroma visoka in tališče se nahaja pri 3367 ºC. Zaradi svojih termo-fizikalnih lastnosti se navedeni materiali tudi največ uporabljajo pri orodjih-elektrodah.
Točnega modela EDM (kot je naveden zgoraj) nimamo. Vendar znani modeli termičnih procesov v elektrodah dovoljujejo približne izračune grobosti površine in globino toplotno spremenjenega sloja. S pomočjo tega modela je možno približno predvideti odvzem materiala in obrabo orodja-elektrode.
Dinamika plinskega mehurja, ki se formira okoli prevodnega kanala
Na začetku razelektritve je kanal stisnjen, predvsem zato, ker je delovna tekočina, v kateri proces poteka, nestisljiva. Zato se v trenutku začetka razelektritve pojavi »udarni val« tlaka, ki je odvisen od hitrosti naraščanja toka. Potem se okrog prevodnega kanala formira in razširi vroč plinski mehur. Parametri tega mehurja so odvisni od parametrov razelektritve, stopnje medsebojnega vpliva prejšnjih razelektritev in lastnosti delovne tekočine. Plinski mehur se razširi do določene maksimalne prostornine, nakar se sesede. Plinski mehur traja nekoliko dlje, kot je čas trajanja same razelektritve.
Odvzem materiala iz kraterja
Staljeni delci in izparine kovine izletijo z visoko hitrostjo iz kraterja, ki ga naredimo s pomočjo razelektritve v materialu elektrode. Delci pri izletu dosežejo hitrosti do 100 m/s. To se odvije v času trajanja razelektritve zaradi razlike v tlaku, ki nastane na meji med razelektritvijo in kovino. Večji delež kovine izleti iz kraterja v staljeni ali plinski obliki v trenutku upada toka na koncu razelektritve, kar je povezano s strmim padcem tlaka v prevodnem kanalu. To privede do izparevanja že razžarjene kovine in eksplozivnega izleta kovine iz kraterja. Krajši ko je zadnji impulz toka, tem bolj intenzivno poteka izmet zlitine iz kraterja.
Termo-kemični procesi v dielektriku (delovni tekočini)
Delovne tekočine v EDM običajno vsebujejo ogljik. Pri segrevanju in izparevanju tekočine se v času trajanja razelektritve formirajo asfaltno-smolaste tvorbe in delci pirolitičnega grafita, ki so produkti termičnega razbijanja (krekinga). Dielektrik ne izpareva samo okrog razelektritve, ampak tudi na mestih, ki jih segrejejo sosednje razelektritve. Ti procesi porabijo od 10 do 15% vse energije, ki jo dovajamo z generatorjem. Produkti termičnega razbijanja so elektroprevodni, tako da pri enakih drugih pogojih njihova koncentracija vpliva na velikost reže med elektrodami.
Procesi na delovni površini ob množičnih razelektritvah
Četudi so premori med razelektritvami daljši od samih razelektritev, predhodne razelektritve vplivajo na potek posameznega naslednjega preboja in potek naslednjih razelektritev. V primeru obdelave negladkih in nečistih površin se nastavi premor, ki je nekoliko krajši kot razelektritev. Zato ima medsebojno vplivanje razelektritev, ki potekajo v omejeni obdelovalni površini, pomembno vlogo pri razporejanju naslednjih razelektritev po obdelovalni površini. Razporejenost razelektritev pa ne vliva samo na odvzem zlitine in obrabo orodja-elektrode, pač pa tudi na debelino toplotno spremenjenega sloja in konturo površine.
Vzajemna povezanost razelektritev se odraža na njihovem združevanju na določenih mestih obdelovalne površine, ker so pogoji za ponovitev razelektritve boljši tam, kjer je razelektritev že potekla.
Temperaturne superpozicije na določenih lokaliziranih mestih obdelovalne površine, kjer se združujejo razelektritve, privedejo do pregrevanja teh delov in izparevanja delovne tekočine. Para se z delci, ki nastanejo z erozijo, dviguje proti izhodu iz delovnega območja. Če je prostornina pare večja od obdelovane prostornine, se proces izmeta delcev preneha. Razelektritve med elektrodami potekajo v prostoru, ki je zasičen z erodiranimi delci in v tem primeru prihaja do procesa sintranja in nastajanje žlindre. Glavni cilj pri upravljanju procesa je preprečitev nastajanja žlindre.
Zaradi temperaturnih superpozicij (povzroči jih množica razelektritev na določenem mestu) je debelina termično spremenjenega sloja obdelovalne površine vedno večja od tiste, kjer je potekla le ena razelektritev. Toplotno energijo akumulirata obe elektrodi, preko elektrod toplotna energija prehaja v delovno tekočino in z delovno tekočino zapušča delovno območje. Za segrevanje elektrod in delovne tekočine se porabi 80% energije, ki jo dovaja generator.
Pomemben je še en proces, ki je neposredno povezan z združevanjem razelektritev. Na določenih lokaliziranih vročih mestih površine anode, kjer se združujejo razelektritve, se formira tenek sloj pirolitičnega grafita. Ta sloj pod določenimi pogoji bistveno zmanjšuje obrabo orodja-elektrode iz bakra in grafita. To dejstvo jasno priča o pomembnosti skupinskega proženja razelektritev brez formiranja žlindre.
Introduction
EDM is a widely used machining method for hard metals and metal alloys, or for complex surface geometry, deep ribs (slots) and sharp internal angles in metals. It competes successfully with other machining methods in these applications. The modern Sinking EDM method incorporates highly efficient automatic technologies based on extensive knowledge of EDM theory and years of experience.
For better understanding of the Sinking EDM process, it is necessary to possess the knowledge of basic aspects of the EDM metal removal theory.
It is known that the geometry and size of the tool-electrode (tool) contains all the information about the part. The motion of the tool creates an inverted image in the workpiece-electrode (workpiece). It is also known that each discharge between the tool and the workpiece leads to formation of localized craters on the working surfaces. Servo-controlled superimposition of a large quantity of such craters forms the geometry of the gap between the tool and the workpiece.
Sinking EDM is a stochastic process whereas the conditions of formation and evolution of each discharge depends on the outcome of preceding discharges. There is no known mathematical model of the Sinking EDM process due to the lack of complete definitions of interdependent non-linear probabilistic electrodynamic, thermoenergetic, hydrodynamic and thermochemical processes for a single discharge. Consequently, the scientific researchers have developed a phenomenological model of the EDM process which is based on individual core EDM aspects:
1. Single Discharge Processes
- Breakdown and Formation of The Discharge Channel
- Energy Balance and Thermal Processes Affecting Electrodes
- Gas Bubble Formation Around The Discharge Channel
- Thermochemical Processes in The Working Fluid
2. Multiple Discharge Processes
Single Discharge Processes
Breakdown
There is a variety of theories explaining the discharge breakdown in the gap between the electrodes. In our opinion, the theory impact ionization of liquid between its conductive particles leading to formation of the discharge channel is most applicable. This theory explains why EDM process does not occur in clean dielectric fluid (due to short circuits) and why the gap size strongly depends on the concentration of waste particles in the gap.
There is a high probability of short circuits occurring through the localized waste particles during rough and semi-fine regimes, if the concentration of waste particles is extremely high. It is necessary for the generator power in the very beginning of the discharge to be sufficient for destruction of conductive by-products of erosion and formation a normal discharge channel to stabilize the process on such regimes.
Discharge channel
The discharge channel forms after the breakdown between the electrodes. The diameter of such channel grows quickly in the first few microseconds. Afterwards, as the duration of discharges increases, the speed of channel growth quickly decreases. These speeds depend on the condition of the dielectric fluid – ceteris paribus (temperature, waste particle concentration, etcetera).
Plasma, consisting of electrons and ions, forms inside the discharge channel. After the breakdown, in the beginning of the discharge, the electrons possess higher kinetic energy and higher temperature than the ions. In longer lasting discharges, the temperature of electrons and ions balances out and the plasma of the channel becomes isothermal.
The drop in voltage inside the discharge channel is practically proportional to the length of the channel. The rate of increase of the discharge channel diameter depends on the duration and magnitude of the discharge as well as the condition of the above-mentioned dielectric fluid.
Energy balance
It is known that the energy and power of the discharge are distributed across the electrodes (cathode and anode) and the discharge channel. The energy is supplied to the electrodes with the help of the following:
- Bombarding with electrons and ions
- Thermal bombarding with hot particles from the discharge channel
- Thermal radiation
- Volumetric sources of heat
The research shows that the main part of the energy supplied to the electrodes is determined by electrons and ions. The balance of energy between anode and cathode depends on the duration of the discharge – ceteris paribus. If the duration of the discharge is shorter than 10 microseconds then most of the energy is supplied to the anode by bombarding it with “fast” electrons. If the duration of the discharge is between 100 and 1000 microseconds then most of the energy is supplied to the cathode with “slow” ions as the voltage drop at the anode decreases. The voltage drop is approximately proportional to the current density, which decreases as the diameter of the discharge channel is increased.
Consequently, the removal of metal from cathode surpasses the removal of metal from anode with discharges that have a sufficiently long duration. The power at the anode and cathode can be represented as thermal energy. Thermal energy density, similar to current density, depends on the duration and power of the discharge. Thermal energy arising in the discharge channel is lost to evaporation of the dielectric fluid and light emission.
Discharge thermal processes
The researchers have been able to identify the following phenomena using classical thermal physics theory:
- For discharges with duration less than 10 microseconds, the thermal energy density at the place of contact of the discharge channel and the electrodes reaches tens of millions of watts per square centimeter. In this case, the electrode particles evaporate immediately, regardless of their thermophysical properties. At the same time, very little energy is transferred to the bodies of the electrodes. Therefore, thermally modified layer is practically non-existent after machining with short impulses.
- For discharges with duration in the range of 100-1000 microseconds, the thermal energy density is reduced drastically. Most of the metal from the discharge crater is removed in melted state as opposed to gaseous state. At the same time, a significant portion of thermal energy is transferred to the bodies of the electrodes. This leads to the formation of thermally modified layer with a depth of 0.01-0.2 millimeters.
It becomes possible to use the differences in thermophysical properties between the electrodes for drastic reduction of wear of the tool. For example, the temperature of graphite sublimation is around 3,500 °C; the thermal conductivity of graphite or steel is only a fraction of that of copper; tungsten possesses relatively high thermal conductivity and a melting point of 3,367 °C. Consequently, the above-mentioned materials are widely used as tool-electrodes for EDM.
There is no known exact model of EDM process. However, known models of thermal processes in electrodes allow us to estimate the roughness of the surface and the depth of the affected zone after EDM processing. Based on these models, it is possible to closely determine the metal removal rate and the extent of tool wear.
Gas bubble dynamics surrounding the discharge channel
At the beginning of the discharge, the channel is compressed as the dielectric fluid in which it forms is practically incompressible. Therefore, at the moment of the beginning of discharge formation an “impact wave” occurs. Such impact wave has the most of its pressure at the front, whereas the pressure depends on the growth rate of the electrical current. Then a gas bubble, filled with hot gas, forms and expands around the discharge channel. The dimensions of the bubble depend on the parameters of the discharge, degree of interdependency of the discharges and properties of the dielectric fluid. The gas bubble expands to its maximum volume and bursts. The duration of the bubble is much longer than the duration of the discharge.
Evacuation of Metal from a Crater
Melted particles and vapors of metal fly out of a crater, formed in the body of the electrode by a discharge, at a high speed that can reach 100 meters per second. This happens partially during the discharge due to fluctuation of pressure at the border between the discharge and the metal. However, most of the metal is evacuated in melted and gaseous state at the moment of a drop of electrical current at the end of the discharge, which is related to the abrupt drop in pressure in the discharge channel. This leads to partial evaporation of already melted metal and its explosive removal from the crater. The shorter the pulse fall time, the more intensive the evacuation of metal from a crater.
Thermochemical Processes in the Dielectric Fluid
EDM dielectric fluids usually contain carbon. Thermal cracking by-products – asphaltic resinous compounds and particles of pyrographite – emerge during heating and evaporation of the fluid during the discharge. Dielectric fluid evaporates not only around the discharge, but also around the very hot zones resulting from other discharges. These processes consume 10-15% of overall energy supplied by the generator. Thermal cracking by-products are conductive, so their concentration determines the size of the gap between the electrodes – ceteris paribus.
Multiple Discharge Processes
The series of discharges influence the conditions for breakdown and formation of subsequent discharges even if pauses between discharges are much longer than the duration of discharges. In rough and semi-fine EDM regimes, normally selected pause duration is much shorter than the duration of a discharge. Consequently, the interdependence of discharges that are initiated in the limited space between the electrodes has utmost significance in dispersion of discharges across the work surface. Besides the rate of metal removal and tool wear, the depth of the thermally modified layer and the uniformity of the work surface roughness after processing also depend on the dispersion of discharges.
Interdependence of discharges leads to their grouping in localized regions of the work zone as the conditions for initiation of subsequent discharges are better in those places where discharges already took place.
Superposition of temperatures in localized regions of group formation of discharges leads to overheating and evaporation of dielectric fluid in those regions. Vapor leaves the work zone, carrying erosion by-products with it. If the volume of vapor exceeds the volume of work zone, the process of evacuation of erosion by-products terminates. Discharges start to occur between the electrodes and the erosion by-product particles, leading to their bake-on adhesion and formation of slag. The goal of the EDM process control is to prevent slag formation.
Due to the superposition of temperatures, the depth of the thermally modified layer created by groups of discharges is always greater than the depth of the thermally modified layer created by a single discharge. Both electrodes accumulate thermal energy, which is then transferred to the dielectric fluid and then leaves the work zone. Up to 80% of the energy supplied by the generator may be lost as heat transferred to the electrodes and the dielectric fluid.
There is yet another process related to the grouping of discharges. A thin layer of pyrographite adheres to the surface of the anode where groups of discharges emerge in hot localized regions. Under certain conditions, this layer may drastically reduce the tool wear, if the tool is made of copper and graphite. This explains the importance of initiation of series of discharges in such a way that prevents the slag formation.